
AD

GRANT NUMBER DAMD17-98-1-8305

TITLE: Genomic Imprinting of the M6P/IGF2 Receptor: A Novel
Breast Cancer Susceptibility Mechanism

PRINCIPAL INVESTIGATOR: Randy L. Jirtle, Ph.D.

CONTRACTING ORGANIZATION: Duke University Medical Center

Durham, North Carolina 27710

REPORT DATE: July 1999

TYPE OF REPORT: Annual

PREPARED FOR: Commanding General
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

20000718 042
DTIC QUAW MINZCOr- 1ý,4



REPORT DOCUMENTATION PAGE Form ApprovedREPORT__ DOCUMENTATION _PAGE_ OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1999 Annual (1 Jul 98 - 30 Jun 99)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Genomic Imprinting of the M6P/IGF2 Receptor: A Novel Breast Cancer Susceptibility DAMD17-98-1-8305
Mechanism

6. AUTHOR(S)
Randy L. Jirtle, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Duke University Medical Center REPORT NUMBER
Durham, North Carolina 27710

E*Mail: jirtle@radonc.duke.edu

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
U.S. Army Medical Research and Materiel Command AGENCY REPORT NUMBER
Fort Detrick, Maryland 21702-5012

11. SUPPLEMENTARY NOTES

This report contains colored photographs

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) gene encodes for a receptor that plays a
critical role in regulating the bioavailability of extracellular proteolytic enzymes and growth factors known to be
involved in carcinogenesis. Our recent findings indicate that the M6P/IGF2R also functions as a tumor suppressor gene
in liver, breast, and lung cancer. We hypothesize that M6P/IGF2R gene inactivation, by the novel mechanism of
genomic imprinting, results in a non-Mendelian inherited predisposition to breast cancer. We have determined that the
frequency of monoallelic M6P/IGF2R expression in breast cancer patients is higher than that of age-matched controls
and are currently investigating the mechanism underlying the monoallelic expression in these patients. Based on
exciting new information we have obtained for Wilms' tumors, we are presently testing the hypothesis that deficiency in
M6P/IGF2R expression in these breast cancer patients is due to mutations in intron 10 of the M6P/IGF2R gene. These
results would demonstrate a novel mechanism for the induction of breast carcinogenesis due to inactivation of the
M6P/IGF2R gene through a post-transcriptional mechanism. Future studies will be directed at determining whether this
is a result of spontaneous mutation or rather represents a heritable trait, which may be useful as a predictive and/or
prognostic indicator of breast cancer susceptibility.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Breast Cancer 43

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) USAPPC V1.00
Prescribed by ANSI Std. Z39-18 298-102



FOREWORD

Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the U.S.
Army.

___Where copyrighted material is quoted, permission has been
obtained to use such material.

___Where material from documents designated for limited
distribution is quoted, permission has been obtained to use the
material.

___Citations of commercial organizations and trade names in
this report do not constitute an official D epartment of Army
endorsement or approval of the products or services of these
organizations.

___In conducting research using animals, the investigator(s)
adhered to the "Guide for the Care and Use of Laboratory
Animals," prepared by the Committee on Care and use of Laboratory
Animals of the institute of Laboratory Resources, national
Research Council (NIH Publication No. 86-23, Revised 1985).

,."/ For the protection of human subjects, the investigator(s)
adhered to policies of applicable Federal Law 45 CFR 46.

___In conducting research utilizing recombinant DNA technology,
the investigator(s) adhered to current guidelines promulgated by
the National Institutes of Health.

___In the conduct of research utilizing recombinant DNA, the
investigator(s) adhered to the NIH Guidelines for Research
Involving Recombinant DNA Molecules.

___In the conduct of research involving hazardous organisms,
the investigator(s) adhered to the CDC-NIH Guide for Biosafety in
Microbiological and Biomedical Laboratories.

Page 3



TABLE OF CONTENTS:

Front Cover ................................................................. 1I

Standard form (SF) 298, Report Documentation Page........................... 2

Foreword.................................................................... 3

Table of Contents............................................................ 4

Introduction ................................................................. 5

Body ....................................................................... 5

Key Research Accomplishments ............................................. 6

Reportable Outcomes ........................................................ 6

Conclusions ................................................................ 6

References.................................................................. 7

Appendices ................................................................. 8

Page 4



INTRODUCTION:

The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R)
gene encodes for a receptor that plays a critical role in regulating the bioavailability of
extracellular proteolytic enzymes and growth factors known to be involved in
carcinogenesis (1, 2). Our recent findings indicate that the M6P/IGF2R also functions as
a tumor suppressor gene in liver, breast, and lung cancer (2, 3, 4). We have determined
that the frequency of monoallelic M6P/IGF2R expression in breast cancer patients is
higher than that of age-matched controls and are currently investigating the mechanism
underlying the monoallelic expression in these patients.

BODY:

Since genomic imprinting leads to uniparental allelic expression, only a single
mutation or recombination event would be necessary to functionally inactivate an
imprinted tumor suppressor (2, 5). Thus, we have postulated that genomic imprinting of
the M6P/IGF2R gene would result in a non-Mendelian inherited genetic predisposition to
breast cancer. If genomic imprinting of the M6P/IGF2R predisposes women to breast
cancer, then a significantly higher frequency of M6P/IGF2R gene imprinting should exist
in breast cancer patients than in age-matched women with no history of cancer.

The initial findings of monoallelic M6P/IGF2R gene expression in 2/32 (6%) of
the breast cancer patients prompted our investigation into the mechanism directing this
phenotype. To eliminate any possibility of partial imprinting interfering with the
interpretation of the experimental data, we initially focused our attention on Wilms'
tumor patients, which have been documented to have clear and complete monoallelic
expression of the M6P/IGF2R gene (6). Using four polymorphic markers within the
M6P/IGF2R gene (mRNA nucleotide positions 901, 1197, 5002, and ACAA, a four-
nucleotide insertion/deletion polymorphism in the 3' untranslated region), 2/8 (25%)
Wilms' tumor patients were identified which were monoallelic at the cDNA level for the
5002 and ACAA informative loci. Surprisingly, these same two samples were found to
have biallelic expression of M6P/IGF2R mRNA at the 901 and 1197 informative
markers. Therefore, these two Wilms' tumor patients appear to have acquired a
mutational event between the upstream (901 and 1197) and downstream (5002 and the
ACAA) polymorphic markers which renders one transcript of the M6P/IGF2R inactive
through truncation.

We have mapped the genomic region in which this mutational event occurred to
within intron 10 of the M6P/IGF2R gene (7). Intron 10-specific sequence was present in
cDNA from one allele of these samples using an intron 10 strand-specific oligonucleotide
to prime reverse transcription followed by PCR amplification and nucleotide sequence
analysis. It is not clear at this time if this unusual finding can be explained by a
previously undefined mechanism which invokes aberrant regulation of genomic
imprinting. Alternatively, there may be a mutational event which results in incorrect
splicing of intron 10 with loss of downstream message. Similarly, transcriptional
termination within intron 10 would produce an RNA transcript from which intron 10
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cannot be excised. Current experimental efforts are directed at utilizing 3' RACE (Rapid
Amplification of cDNA Ends) to map the 3' site of termination for this RNA. We are
also presently in the process of cloning the entire intron 10 (5.5 kb) from both normal and
tumor samples to allow for sequencing this intron in its entirety. This will enable us to
unequivocally identify the mutation which leads to production of the truncated
M6P/IGF2R transcript.

Once the mutation(s) within intron 10 is identified, we will return to the samples
found to have "monoallelic expression" in breast cancer and evaluate these samples in
light of the new information obtained. If these samples are also found to contain the
intron 10 mutation, we will re-evaluate all of the breast cancer samples and the normal
controls to determine the carriage rate for the intron 10 mutation. It is possible that this
mutation may not be able to exert its effect alone, but may require other influential
mutations in other genes to effect the production of the truncated RNA. If this is the
case, this mutation could represent a predisposing, heritable factor for oncogenesis that
might be present in a larger percentage of the population and be of value as a predictive
tool for breast cancer susceptibility. In addition, the remaining expressed allele from the
breast cancer patients showing "monoallelic expression" will be examined for
inactivating mutations which may have directly led to the initiation of breast tumor
formation.

KEY RESEARCH ACCOMPLISHMENTS:

" Monoallelic M6P/IGF2R 3' end gene expression was found in 2/32 (6.3%) of breast
cancer patients, suggestive of either aberrant genomic imprinting and/or a
posttranscriptional mechanism which results in the production of a single or truncated
mRNA species.

" We have determined that in Wilms' tumor patients, a truncated M6P/IGF2R transcript
is produced from one allele and have further mapped the site of truncation to within
intron 10 of the M6P/IGF2R gene.

REPORTABLE OUTCOMES:

Manuscripts:
1. R.L. Jirtle, Exp. Cell Res. 248, 18 (1999).
2. J.G. Falls, D.J. Pulford, A.A. Wylie, R.L. Jirtle, Am. J. Path., 154, 635 (1999).
3. J.K. Killian, R.L. Jirtle, Mamm.. Genome, 10, 74 (1999).
4. D.J. Pulford, J.G. Falls, J.K. Killian, R.L. Jirtle, Mutat. Res., 436, 59, (1999).

CONCLUSIONS:

The experimental results generated over the last support period have demonstrated
a novel mechanism for production of a functionally monoallelic phenotype in both breast
cancer and Wilms' tumor. The mapping of the 3' end of the truncated M6P/IGF2R
mRNA in Wilms' tumor to within intron 10 suggests that a mutational event has occurred
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within intron 10 which has in some way contributed to oncogenesis in these patients.
Mapping of the specific mutation(s) within intron 10 that produce this phenotype will
give us information that will be used to re-evaluate both the breast cancer samples and
the normal controls to determine the frequency of this genetic alteration and if it is a
predisposing factor for breast cancer. If this mutation is found to occur more frequently
in the breast cancer samples, it may be useful as a diagnostic/prognostic tool for breast
cancer development and survival. Furthermore, this unique mechanism for producing
only one functionally active copy of the M6P/IGF2R may predispose individuals to a
variety of cancers, and may be useful not only for screening purposes but also in
contributing to our understanding of the complex etiology of tumor formation.

REFERENCES:

1. S. Kornfeld, Annu. Rev. Biochem. 61, 307 (1992).
2. R. L. Jirtle, Exp. Cell Res. 248, 18 (1999).
3. A. T. De Souza, T. Yamada, J. J. Mills, R. L. Jirtle, FASEB J. 11, 60 (1997).
4. J. G. Falls, D. J. Pulford, A. A. Wylie, R. L. Jirtle, Am. J. Pathol. 154, 635 (1999).
5. D. J. Pulford, J. G. Falls, J. K. Killian, R. L. Jirtle, Mutat Res 436, 59 (1999).
6. Y. Q. Xu, P. Grundy, C. Polychronakos, Oncogene 14, 1041 (1997).
7. J. K. Killian, R. L. Jirtle, Mamm. Genome 10, 74 (1999).
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MINIREVIEW

Genomic Imprinting and Cancer

Randy L. Jirtle'

Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710

male pronuclei, and gynogenotes formed from two fe-
Although we inherit two copies of all genes, except male pronuclei failed to develop properly during em-

those that reside on the sex chromosomes, there is a bryogenesis [5, 6]. Similarly, in humans complete hy-
subset of these genes in which only the paternal or datidaform moles which contain only paternal
maternal copy is functional. This phenomenon of chromosomes produce primarily placental tissue, while
monoallelic, parent-of-origin expression of genes is dermoid cysts which contain only maternal chromo-
termed genomic imprinting. Imprinted genes are nor-
mally involved in embryonic growth and behavioral somes produce primarily embryonic tissue [7, 8]. These
development, but occasionally they also function inap- findings demonstrated that the mammalian genome
propriately as oncogenes and tumor suppressor genes. contains autosomal genes that are only expressed from
The evidence that imprinted genes play a role in car- either the maternal or paternal allele. There are now
cinogenesis will be discussed in this review. Addi- more than 20 human imprinted genes identified rang-
tional information about imprinted genes can be ing from growth factors to untranslated RNA, and it is
found on the Genomic Imprinting Website at: (http:l! postulated that 100 to 500 imprinted genes may exist
www.geneimprint.com). © 1999 Academic Press [for review see 9].

The first endogenous imprinted gene identified was
Igf2 [10]. In 1991 De Chiara et al. [10] discovered that

INTRODUCTION homozygous Igf2-null mice were approximately 40%
smaller than wild-type mice when they were born,

Genomic imprinting is a non-Mendelian inherited consistent with the known growth effects of Igf2. Im-
epigenetic form of gene regulation that results in portantly, the dwarfing phenotype was also observed in

monoallelic expression. In contrast to the random al- heterozygous mice, but only when the mutated allele

lele inactivation that occurs for example at the Xist her ited fo t fa the motated at
locs [1, he xprsse aleleforimpintd gnesiswas inherited from the father. This demonstrated that

locus [1], the expressed allele for imprinted genes is te11 eei mrne n xrse nyfo h

dependentthe Igf2 gene is imprinted and expressed only from the

,Vn-4e. Thus, genomic imprinting is a phenomenon paternal allele. IGF2 is also imprinted in human tis-
where the expression of a gene in this generation is sues with the notable exception of the adult liver where

dependent upon whether it resided in a male or female pression is biallelic because of promoter switching
the past generation. Epigenetic events such as DNA after birth [11].
methylation at CpG sites control the imprinting of The second imprinted gene discovered was the ma-
genes [4]. Therefore, factors other than the sex of the ternally expressed mannose 6-phosphate/insulin-like
parent could even modify the imprint process, thereby growth factor 2 receptor (M6p/Igf2r) [12]. The M6p/
resulting in a Lamarkian-like inheritance of acquired Igf2r maps to the Tie locus on mouse chromosome 17
traits. Such potential imprint-altering factors could [12], and is the gene responsible for this maternal

include the parental level of nutrition, stress, and ex- lethal effect [13]. The M6p/Igf2r encodes for a receptor

posure to chemical and physical agents. that binds both M6P-containing glycoproteins and Igf2
The existence of imprinted genes first became appar- through independent binding sites [for review see 14].

ent when nuclear transplantation experiments demon- The primary function of this receptor is the intracellu-
strated that diploid androgenotes derived from two lar trafficking of phosphomannosyl glycoproteins from

the Golgi apparatus to the lysosomes, and the inter-

'To whom reprint requests should be addressed at Duke Univer- nalization of Ig12 and other extracellular ligands to the
sity Medical Center, Box 3433, Durham, NC 27710. Fax: (919) 684- lysosomes for degradation [14]. Igf2 signaling is not
5584. E-mail: jirtle@radonc.duke.edu. mediated by M6p/Igf2r, but rather it occurs principally
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GENOMIC IMPRINTING AND CANCER 19

through the Igfl receptor and the insulin receptor [15, of the only functional copy of an imprinted tumor sup-
16]. pressor gene [9, 31]. Alternatively, loss of imprinting

Thus, the bioavailability of Igf2 is controlled by a (LOI) or UPD at an imprinted locus may result in an
receptor that is also imprinted but expressed only from increased expression of an imprinted proto-oncogene.
the maternal allele. The reciprocal imprinting of the Furthermore, mutational inactivation of an imprint
Igf2 and M6p/Igf2r genes suggested that the evolution control center could cause aberrant expression of mul-
of genomic imprinting may have resulted from a par- tiple imprinted proto-oncogenes and/or tumor suppres-
ent-offspring conflict to control fetal growth [17]. This sor genes since imprinted genes often occur in chromo-
parental "tug-of-war" model postulated by Haig [17] somal domains [32, 33]. Imprinted genes now impli-
predicts that paternally expressed genes promote pre- cated in human carcinogenesis include: IGF2, WT1,
natal and postnatal growth while maternally ex- p 5 7IP2, p73, NOEY2, and M6PIlGF2R [9].
pressed genes are growth suppressors. The identifica- Aberrant genomic imprinting and its role in cancer
tion of additional imprinted genes and their function are best exemplified by studies on Wilms' tumor, a
will be required to determine whether this provocative sporadic and familial childhood kidney tumor that
model is adequate to explain the evolutionary pressure arises from metanephric blastemal cells. Direct genetic
that resulted in the creation of genes that are function- evidence linking tumorigenesis and aberrant imprint-
ally haploid [18]. ing was identified when 70% of Wilms' tumors were

Imprinted genes are not only important in prenatal found to have biallelic expression of IGF2 [34-36], a
[10, 19] and postnatal [20, 21] growth control, but also gene that encodes for a growth factor known to be
in behavioral development. People with Angelman syn- oncogenic when overexpressed [37, 38]. Inactivation of
drome, a congenital disease that evidence suggests is the reciprocally imprinted H19 gene was also present
caused by the inactivation of the maternally expressed in a number of these cases [36] suggesting that LOI at
UBE3A (ubiquitin protein ligase 3A) gene, are severely the IGF2 locus in Wilms' tumor could result from loss
retarded in addition to having ataxia, tremulousness, of H19 expression [39, 40]. This postulate is supported
sleep disorders, seizures, and being hyperactive [for by the finding that H19-null transgenic mice show
review see 9, 22]. PEG1/MEST, a member of the a/0- biallelic expression of IGF2 [41]. The coupling of bial-
hydroxylase fold family, is a paternally expressed gene lelic IGF2 gene expression with H19 inactivation is
that maps to human chromosome 7q32 [23]. PeglI even observed in phenotypically normal kidney tissue
Mest(+ /-)-deficient mice are viable and fertile; how- surrounding Wilms' tumors [42]. Thus, H19 inactiva-
ever, they exhibit growth retardation and increased tion and the biallelic expression of IGF2 appear to be
lethality [24]. Interestingly, the females that inherit linked and occur early in tumor development. Deregu-
the mutated allele from their fathers also have a de- lation of IGF2 imprinting has now been shown to occur
creased reproductive fitness because of an abnormal in over 20 different tumor types, demonstrating its
nurturing behavior. It is presently unknown whether fundamental mechanistic importance in carcinogene-
PEG11MEST inactivation has a similar effect on ma- sis [9].
ternal nurturing behavior in humans or what effect Another imprinted gene involved in Wilms' tumor
gene inactivation has in males. Furthermore, the formation is WT1, a tumor suppressor located at hu-
M6PIIGF2R has been identified as the first putative man chromosome 11p 1 3 [43]. WT1 is biallelically ex-
"IQ gene," implicating imprinted genes in the develop- pressed in the kidney, heart, lung, liver, and intestine,
ment of cognitive ability [25]. Parent-of-origin inheri- but is expressed largely or exclusively from the mater-
tance effects suggest that imprinted genes are also a nal allele in fetal brain [44]. It is also imprinted in 40%
genetic determinant in autism [26], bipolar effective of preterm placenta [44, 45]. Since the imprint status is
disorder [27, 28], and schizophrenia [29], to name only not correlated with gestational age of the placenta [45],
a few [30]. These results demonstrate that imprinted imprinting of the WT1 gene in the placenta is a poly-
genes~play a prominent role in behavioral genetics. morphic trait. Imprinting at the WT1 locus is also

polymorphic in fibroblasts and lymphocytes, but the
IMPRINTED ONCOGENES AND TUMOR paternal rather than the maternal allele is expressed

SUPPRESSOR GENES [46]. These findings suggest the interesting possibility
that polymorphic imprinting of the WT1 tumor sup-

Imprinted genes are normally involved in embryonic pressor gene could result in both tissue- and individ-
growth and behavioral development; however, occa- ual-dependent susceptibilities to cancer.
sionally because of inappropriate expression, they also The maternally expressed cyclin-dependent kinase
function as oncogenes and tumor suppressor genes. inhibitor, p5 7K1P2, maps to human chromosome 1lp15.5
Loss of heterozygosity (LOH) or uniparental disomy [47, 48]. Approximately 10% of Beckwith-Wiedemann
(UPD) at an imprinted locus may result in the deletion syndrome patients have p 5 7IaP2 mutations, but p 5 7MP2
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has not been found to be mutated in tumors [49, 50]. also mutated in rat liver tumors induced with the
The maternal allele of p5 7KIP2 is selectively lost in 85% genotoxic agent, diethylnitrosamine [70]. The gene
of lung cancers with 11p15 deletions [51]; however, in contains a poly-G region that is a common mutational
Wilms' tumors with maternal loss of p 5 7 KIP2, the nor- target in colon, gastric and endometrial tumors with
mally silent paternal allele is expressed [52]. This sug- mismatch repair deficiencies and microsatellite insta-
gests that p 5 7K'p2 is not a tumor suppressor, at least in bility [71-73]. Moreover, the M6PIIGF2R is mutated in
Wilms' tumor. Since the imprinting of p 5 7KIp2 is incom- human gliomas that do not contain mutations in the
plete in humans with paternal expression occurring transforming growth factor 0 type II receptor or Bax
even in some tissues, the putative tumor suppressor genes [731, and in 30% of human breast tumors [67].
function of p 5 7 K•P2 needs to be further clarified. Thus, the M6PIIGF2R has been shown to be frequently

NOEY2 is a recently identified member of the RAS mutated in a number of different cancers.
superfamily with high homology to both RAS and RAP Although gene imprinting is often conserved be-
[53]. It maps to human chromosome lp3l and is ex- tween mammalian species, the imprint status of the
pressed only from the paternal allele. LOH at this locus M6P/IGF2R in humans and rodents is strikingly dif-
is observed in 41% of ovarian and breast cancers, and ferent. The M6p/Igf2r is imprinted in mice [12] and
the paternally expressed allele is preferentially de- rats [70], but imprinting at this locus appears to be a
leted. Furthermore, transfection of NOEY2 into breast polymorphic trait in humans, with most individuals
and ovarian tumor cells that normally lack expression having biallelic expression [74-761. The existence of
suppresses growth. Thus, NOEY2 appears to be an individuals with an imprinted M6PIIGF2R tumor sup-
imprinted tumor suppressor gene whose function is pressor suggests that they may have increased suscep-
frequently abrogated in ovarian and breast cancers. tibility to tumor development because of aberrant im-

p73 is an imprinted, maternally expressed gene that print control. This postulate is supported by Xu et al.
encodes for a protein sharing considerable homology [77] who recently reported partial imprinting of the
with the tumor suppressor p53 [54]. It maps to human M6P/IGF2R in 50% of Wilms' tumor patients. Further-
chromosome lp36, a region containing a putative neu- more, only 1 hit rather than 2 hits would be required to
roblastoma tumor suppressor gene expressed predom- inactive the tumor suppressor function of the M6p/
inantly from the maternal allele. The frequent loss of Igf2r in mice. This may in part explain why mice are
p73 in neuroblastomas coupled with the demonstration more sensitive to tumor formation than humans. It
that its overexpression inhibits growth suggested that also suggests that transgenic mice with biallelic ex-
p73 is a tumor suppressor gene [55]. Additional studies pression of the M6p/Igt2r may be better human surro-
with a variety of tumors, however, were unable to gates for carcinogen risk assessment than those pres-
demonstrate either preferential loss of the expressed ently employed.
maternal allele or somatic mutations in the remaining The precise molecular mechanism for genomic im-
allele. These findings suggest that p73 is not the puta- printing of the M6PIIGF2R is not completely defined.
tive imprinted tumor suppressor present at this chro- Methylation of a CpG-rich region in intron 2 (region 2)
mosomal location [56-62]. of the expressed maternal allele carries the imprint

Monoallelic expression ofp73 has recently been dem- signal for this gene in mice [78, 79], and the imprinting
onstrated in normal lung and kidney tissue, whereas box in this region has also now been identified [80].
expression is biallelic in the tumors that develop in This region appears to function as the promoter of an
these tissues [63, 64]. The high frequency of LOI and antisense transcript that originates only from the re-
imprint switching at the p73 locus in lung cancer and pressed paternal allele. This indicates that a form of
renal cell carcinomas suggest that p73 is involved in expression competition may regulate imprinting of the
tumorigenesis through the activation of the silent al- M6p/Igf2r gene in mice [79]. Region 2 of the human
lele and overexpression of wild-type p73. Conse- M6PIIGF2R also contains parent-of-origin methyl-
quently, p73 may function as an oncogene rather than ation, but gene expression is biallelic [81, 82]. Conse-
as a tumor suppressor gene as originally proposed. It quently, humans and mice appear to possess an altered
would be ironic if both p53 and p73 were initially ability to "read" the M6P/IGF2R imprint marks.
described to have an oncogenic function opposite to M6PIIGF2R inactivation is an early event in liver
that which it possesses. carcinogenesis, occurring in the initiation rather than

The M6P/IGF2R, at human chromosome location the progression stage of transformation (Fig. 1) [681.
6q26, is inactivated in a variety of tumors at the ear- Clonal expansion of normal-appearing, preneoplastic
liest stage of transformation [65-68]. It is mutated in hepatocytes with a single M6P/IGF2R allele inacti-
60% of dysplastic liver lesions and hepatocellular car- vated often occurs in patients chronically infected with
cinomas (HCCs) of patients with or without hepatitis hepatitis virus. These precancerous hepatocytes have
virus (HV) infection [65, 66, 68, 69]. The M6PIIGF2R is an enhanced risk of developing into tumors because
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FIG. 1. Oncogenesis model of hepatocellular carcinoma (HCC) development in patients with liver cirrhosis. (A) Normal human liver. (B)
Chronic hepatitis virus infection and/or alcohol abuse results in hepatocyte loss (white areas), and the formation of preneoplastic hepatocytes
in which a single allele of the M6PIIGF2R tumor suppressor gene is inactivated (*). (C) The preneoplastic, M6P/IGF2R-mutated hepatocytes
preferentially regenerate and/or survive, forming clonal lesions (black areas) in the cirrhotic liver. (D) These clonal regions of preneoplastic
hepatocytes (black areas) continue to expand as liver cirrhosis progresses. Approximately 60% of HCCs (large sphere) ultimately arise from
this clonally expanded population of preneoplastic, M6P/IGF2R-mutated hepatocytes; both alleles of the M6PIIGF2R are commonly
inactivated in the HCCs.

they ultimately give rise to more than 60% of human the overall effect of genomic imprinting on cancer sus-
HCCs [65, 66, 68]. This suggests that a primary "initi- ceptibility and penetrance is potentially great.
ation event" in human liver carcinogenesis is the inac-
tivation of a single allele of the M6PIIGF2R gene. The This study was supported by NIH Grants CA25951 and ES08823,
"promotion event" in the transformation process is the DOD Grant DAMD17-98-1-8305, Rohm & Haas Chemical Company,

clonal expansion of these phenotypically normal, M6PI and Zeneca Pharmaceuticals.
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Genomic Imprinting: Implications for Human Disease

J. Greg Falls,* David J. Pulford,*t quently, alteration of normal imprinting patterns gives rise
Andrew A. Wylie,*t and Randy L. Jirtle* to numerous human genetic diseases including cancer.

From the Department of Radiation Oncology,* Duke University This review examines the role of genomic imprinting in
Medical Center, Durham, North Carolina, and Department of several human genetic diseases such as the Beckwith-

Zeneca Pharmaceuticals, Ltd., Cheshire, Wiedemann, Prader-Willi, and Angelman syndromes, as
Safetyfedicinem well as the evidence implicating genomic imprinting in
United Kingdom behavioral disorders and carcinogenesis. For excellent

reviews on the mechanistic models of genomic imprint-
ing, consult Reik and Walter,2 Constancia et al3, and
Barlow.4

Genomic imprinting refers to an epigenetic marking
of genes that results in monoallelic expression. This
parent-of-origin dependent phenomenon is a notable Background
exception to the laws of Mendelian genetics. Im-
printed genes are intricately involved in fetal and Genomic imprinting plays a critical role in embryogenesis
behavioral development. Consequently, abnormal as evidenced by certain aberrations of human preg-
expression of these genes results in numerous human nancy. The complete hydatidiform mole arises from the
genetic disorders including carcinogenesis. This fertilization of an anuclear egg either by a haploid sperm
paper reviews genomic imprinting and its role in (followed by duplication of the paternal genome) or two
human disease. Additional information about im- haploid sperm (diandric diploidy).5 This trophoblastic
printed genes can be found on the Genomic Imprint- disease is characterized by a completely androgenetic
ing Website at http://www.geneimprint.com. (AmJ (Ag) genome and results in reduced or absent fetal
Pathol 1999, 154:635-64 7) growth coupled with hyperplastic extraembryonic

growth.6'- In contrast, ovarian dermoid cysts arise from
the spontaneous activation of an ovarian oocyte resulting

Genomic imprinting (also referred to as gametic or pa- in the duplication of the maternal genome.8 These abnor-
rental imprinting) is the epigenetic marking of a gene malities indicate that normal human development pro-
based on its parental origin that results in monoallelic ceeds only when a complete complement of the paternal
expression. Genomic imprinting differs from classical ge- and maternal genomes is present.
netics in the sense that the parental complement of im- Experimental evidence for the requirement of both the
printed genes are not equivalent with respect to their maternal and paternal chromosomal complements was
expression, despite both parents contributing equally to demonstrated through the manipulation of mouse embry-
the genetic content of their progeny. The mechanism of os.9' 10 Mouse embryos were altered in vitro to produce
imprinting is complex and not completely understood; diploid Ag or diploid parthenogenetic (Pg) embryos, pos-
however, evidence suggests that the "imprint mark" is a sessing only paternal or maternal chromosomes, respec-
parental-specific methylation of CpG-rich domains that is tively. Similarities to the human pregnancy aberrations
established during gametogenesis. The imprint marks on were apparent since Ag mouse embryos had reduced
a gene must be erasable in the germline when transmit- fetal growth and proliferative extraembryonic growth
ted through individuals of the opposite sex, but main- while Pg embryos maintained relatively normal fetal
tained during somatic cell division (Figure 1). growth but exhibited poor extraembryonic growth. Nei-

The total number of publications on genomic imprint-
ing has increased markedly over the past 10 years and
has now reached almost 1500 (Figure 2). There are now Supported by National Institutes of Health grants CA25951 and ES08823,
more than 25 identified imprinted genes (Table 1), and Department of Defense Grant DAMD17-98-1-8305 (to J.G.F. and R.L.J.),
estimates based on mouse models indicate that as many and Zeneca Pharmaceuticals (to D.J.P. and A.A.W).
as 100 to 200 may exist.' Imprinted genes are involved in Accepted for publication January 6, 1999.
many aspects of development including fetal and placen- Address reprint requests to Randy L. Jirtle, Box 3433, Duke University

tal growth, cell proliferation, and adult behavior. Conse- Medical Center, Durham, NC 27710. E-mail: jirtle@radonc.duke.edu.
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)A B The chromosomal regions responsible for the genomic
\.J .fimprinting effects observed in mouse embryos were

f .-i mapped to specific mouse chromosomes by artificially
- generating uniparental disomies (UPD) in mice. Certain

t. regions of distinct chromosomes were responsible for
markedly different phenotypes ranging from embryonic
lethality to various growth and developmental defectsDelad apparent only after birth. These effects were dependent

DD C / Con whether the two copies were inherited entirely from

Pmordial Imprint Reading one parent, resulting in either duplication or deficiency of""e Cell genes in these chromosomal regions.114 It was initially

"Gam"etes postulated that only mouse chromosomes 2, 6, 7, 11, 12,
. mprint Erasure and 17 harbored imprinted chromosomal regions.15

However, there are now reports of other chromosomes
.. .either containing more localized areas of genomic im-

Imprint Establishment printing or harboring genes that show more subtle im-

Figure 1. Imprint establishment and propagation during gametogenesis and printed effects.
development, The paternal allele (dashed line) is imprinted and the maternal UPD also results in phenotypic abnormalities in hu-
allele is expressed (solid line). The "imprint mark" (black box) represents a
parental-specific methylation established during gametogenesis. A: The ms- mans. These include maternal UPD for chromosomes 2,
ternal and paternal genomes have different imprint patterns following fertil- 7, 14, 15, and 16, and paternal UPD for chromosomes 6,
ization. B: Both "imprint marks" and imprint reading are maintained during
somatic cell division, C: The parental specific imprints are erased in the 11, 14, 15, and 20.16 Classic examples of diseases as-
primordial germ cells. D: The appropriate "imprint marks" are reestablished sociated with regional maternal and paternal UPD on
for the next generation. chromosome 15 include the Prader-Willi syndrome and

Angelman syndrome, respectively. Investigations of

ther Ag nor Pg embryos were viable to term.9 ' 0 This these genetic diseases are now helping to elucidate the

demonstrates that genes expressed exclusively from one mechanisms of genomic imprinting in humans.

parental genome exist, and abnormal embryonic devel-
opment results from the loss of function of these mono-
allelically expressed genes. A mark or imprint conferring Imprinting of Specific Genes
parental memory must therefore differentiate between the
parental genomes, be present on the parental chromo- The first endogenous imprinted gene identified was
somes through cell division, and be inheritable. This was mouse insulin-like growth factor 2 ( .gf2), which encodesconfirmed when nuclei from early haploid preimplantation for a critical fetal-specific growth factor. A targeted mu-

confrme whe nuleifromeary haloi primplntaion tation in Igf2 gave rise to a heterozygous dwarfing phe-
embryos were transplanted into fertilized eggs following tation ia heterozy ou dwar he-the removal of one pronucleus. The embryo was viable notype when the mutation was passed from the father
only if the sex of the donor nucleus was opposite that of while the offspring were normal when the mutation wasthe remaining pronucleus. 1 1  

inherited from the mother. 17 Furthermore, the dwarfingphenotype was observed in paternal heterozygotes and
homozygotes suggesting that Igf2 gene expression is

1500 exclusively from the paternal allele. At about the same
time, the mannose 6-phosphate/insulin-like growth factor
type 2 receptor (M6p/Igf2r) gene was shown to be im-
printed and maternally expressed in mice. 18 Interest-
ingly, the products of these oppositely imprinted genes
interact at the biochemical level since the degradation of

1000, Igf2 occurs via the M6p/Igf2r.1 9 When a mutation was
M -targeted to the M6p/Igf2r in mice, maternal heterozygotes
0. or homozygotes showed a 30% increase in fetal growth,

but they were not viable at birth. 2" Thus, the reciprocally
imprinted Igf2 and M6p/Igf2r genes both play an impor-

E tent role in regulating embryonic development and fetal
Z growth."7'20

Numerous techniques have now been used to identify
additional imprinted genes. Positional cloning coupled
with candidate gene testing has identified novel human
imprinted genes located in imprinted clusters at chromo-

0 some positions 11p15.5 and 15q11-q13. Techniques
1988 1990 1992 1994 1996 1998 have also used parental differences in DNA methylation

Year and expression to identify imprinted genes. Subtractive
Figure 2. Total number of papers published on genomic imprinting versus hybridization or differential display using cDNA from Pg,
time. Ag, and fertilized embryos have yielded novel imprinted
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Table 1. Identified Imprinted Genes and Transcripts

Human Mouse

Expressed Expressed
Gene Location allele Gene Location allele References

NOEY2 (ARHI) 1 p31 Paternal 129
p73 1 p36 Maternal 147, 148
U2AFBPL 5q22-q31 Biallelic U2afbp-rs Proximal 11 Paternal 25, 149, 150
MASI 6q25.3-q26 Biallelic/ Mas Proximal 17 Paternal 151-153

Monoallelic
in breast

M6P/IGF2R 6q26-q27 Biallelic/ M6p/Igf2r Proximal 17 Maternal 18, 136-139
Maternal*

lgf2r-AS Proximal 17 Paternal 4,140
GRBIO 7p11.2-12 NR Megl/GrblO Proximal 11 Maternal 31
PEG1/MEST 7q32 Paternal Pegl/Mest Proximal 6 Paternal 21, 154, 155
WT1 11p13 Biallelic/ Wtl 2 NR 120, 156

Maternal*
ASCL2/HASH2 11p15.5 Maternal Mash2 Distal 7 Maternal 157, 158
H19 11 pl 5.5 Maternal H19 Distal 7 Maternal 30, 159
IGF2 11p15.5 Paternal lgf2 Distal 7 Paternal 17, 36, 160-162

lgf2-AS Distal 7 Paternal 36
IMPT1/BWRIA/ 11pl-5.5 Maternal Imptl Distal 7 Maternal 163-166

ORCTL2/TSSC5
INS 11p15.5 Biallelic Ins2 Distal 7 Paternal 167-169
IPLITSSC3/BWR1C 11p15.5 Maternal Ip/ Distal 7 Maternal 164, 170, 171
ITM 11p15.5 NR Itm Distal 7 Maternal 172
KvLQT1 11p15.5 Maternal Kvlqtl Distal 7 Maternal 62, 173
p57KIP2/CDKNIC 11p15.5 Maternal p 5 7 KIP2 Distal 7 Maternal 48, 122, 174
TAPA1 11p15.5 Biallelict Tapal Distal 7 Maternal? 27, 67, 104
HTR2A 13q14 Biallelic/ Htr2 14,Band D3 Maternal 145, 175, 176

Maternal*
FNZ127 15q11-q13 Paternal 177
GABRA5 15q11-q13 Paternal?t Gabra5 Central 7 Biallelic 26, 27, 178
GABRB3 15q1 1-q13 Paternal?t Gabrb3 Central 7 Biallelic 26, 27, 179
GABRG3 15q11-q13 Paternal?t Gabrg3 Central 7 Biallelic 26, 27, 178
IPW 15q11-q13 Paternal Ipw Central 7 Paternal 35, 177, 180, 181
NDN(necdin) 15q11-q13 Paternal Ndn Central 7 Paternal 82, 181, 182
PAR1 15q11-q13 Paternal 177, 180
PAR5 15q11-q13 Paternal 177, 180
PAR-SN 15q 11-q13 Paternal 183
SNRPN 15q11-q13 Paternal Snrpn Central 7 Paternal 84, 184-186
UBE3A 15ql 1-q13 Maternal Ube3a Central 7 Maternal 77-79
ZNF127 15q11-q13 Paternal Zfp127 Central 7 Paternal 80, 181, 187
PEG3 .19q13.4 Paternal Peg3/Apoc2 Proximal 7 Paternal 22, 188
Neuronatin 20q11.2-q12 NR Peg5/Nnat Distal 2 Paternal 23, 189, 190
GNAS1 20q13 Paternal Gnasl Distal 2 Maternal/ 191-194

Paternal
XIST Xq13.2 Paternal? Xist Xic Paternal 195-200

(XIC) t

Grfl/Cdc25Mm Distal 9 Paternal 24
Impact Proximal 18 Paternal 201
Ins1 Distal 19 Paternal 167, 202

NR, not reported.
"* Polymorphic imprinting,
t Determined in vitro.
* X-inactivation center.

genes such as Pegl/Mest, a mesoderm restricted hydro- results from a somatic-cell hybrid system indicated that
lase at mouse chromosome 6; Peg3, a novel zinc-finger these receptor subunit genes were not imprinted. 2 7

protein on proximal mouse chromosome 7; and Peg5/
Nnat located on mouse chromosome 2.2123 The Grfl and Characteristics of Imprinted Genes
U2afl-rsl imprinted genes were identified by a genome-
wide screen termed restriction landmark genome screen- Several theories have been proposed for the endoge-
ing (RLGS). 24

,
25 Finally, three GABAA receptor subunit nous function of genomic imprinting. Moore and Haig 2 8

genes (GABRB3, GABRA5, and GABRG3) were shown to have suggested that genomic imprinting in mammals has
be exclusively expressed from the paternal allele by mi- evolved from a conflict of interest between the paternal
crocell-mediated chromosome transfer.2 More recently, and maternal genome in regulating fetal growth. Whereas
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benefits of a large placenta and fetus might ensure future 50). Beckwith-Wiedemann syndrome (BWS) maps to
propagation of a paternal line, the result may tax the 11p15 and is characterized by general overgrowth with
resources of the mother, thereby compromising future symptoms including hemihypertrophy, macroglossia,
pregnancies. Conversely, if fetal and placental growth is and visceromegaly. Genomic imprinting in BWS was first
held in check, more offspring from the mother's (and suspected when preferential maternal transmission of
possibly different father's) lineage may be produced. Ac- mutations was observed in some BWS families.51 Addi-
cordingly, the mother would be predicted to imprint or si- tionally, approximately 10-20% of BWS individuals are
lence genes that promote placental and fetal growth, predisposed to embryonal tumors, the most frequent of
whereas the father would imprint genes that inhibit growth, which are Wilms' tumors and adenocortical carcinoma. 52

In support of this theory, the gene encoding the fetal The rate of Wilms' tumor formation in the BWS population
growth factor, Igf2, is maternally imprinted, whereas H19, is 1000-fold higher than in the normal population, and
which encodes for an untranslated RNA involved in si- these tumors often show preferential loss of maternal
lencing Igf2 expression, is paternally imprinted. 17' 29,30  11p15.5 3 The majority of BWS cases arise sporadically;
The result of this reciprocal imprinting is parent-of-origin, however in both sporadic and familial forms a small
monoallelic paternal expression of the gene encoding for

lgf2. Interestingly, the genes that encode for the M6p/ percentage exhibits UPD at chromosome 11p15. In these
Igf2 Ineretingy, he enestha enode or he ~p/ cases, the remainder of the chromosome is biparental inlgf2r which degrades Igf2, and Megl/GrblO which inhib- inheritance, indicative of somatic mosaicism through a

its Igf2 signaling are both paternally imprinted, adding pintfertiizatianc mitticrecombation evenmt.5 ug
further support for this theory.15819' 31  postfertilization mitotic recombination event.

An alternative proposal for imprinting suggests that the The most common molecular event occurring in BWS

cytosine methylation involved in imprint regulation patients that do not have cytogenetic abnormalities is the

evolved as a defense mechanism for the inactivation of biallelic expression of IGF2 due to loss of imprinting
parasitic sequences such as transposable elements and (LOI). 56' 57 LOI at the IGF2 locus may be accompanied by
proviral DNA. 32 This is supported by the finding that the methylation and/or silencing of the active maternal
5-aza-deoxycytidine, an inhibitor of cytosine DNA meth- allele of H19. 58"59 This H19-dependent event is consis-
yltransferase, activates silent retroviruses. 33 Irrespective tent with an enhancer-competition model for the co-reg-
of the reason for the evolution of genomic imprinting in ulation of these genes.6"
mammals, the functional consequences of genomic im- Translocations in BWS patients may also lead to LOI at
printing include the inhibition of parthenogenesis and the the IGF2 locus, but without loss of H19 imprinting.61

loss of protection from deleterious recessive mutations. These translocations affect imprinting by disrupting a
As more imprinted genes are identified, the character- gene involved in imprint control, or by altering the func-

istics of imprinting are becoming apparent. For example, tion of an imprinting center (IC). Therefore, disruption of
two chromosomal regions harbor more than one im- IGF2 imprinting in BWS may also occur via an H19-
printed gene. These imprinting clusters reside at human independent event.56' 5 7 The imprinted KvLQT1 gene lo-
chromosome 11p15.5 (syntenic to the distal region of cated centromeric to IGF2 spans a common breakpoint
mouse chromosome 7) and human chromosome 15q11- region in BWS, and has been proposed to maintain re-
q13 (syntenic to the central region of mouse chromosome gional imprint control at 11p15.5. 60 KvLQT1 shows pref-
7). Within these imprinted gene clusters, genes have erential expression from the maternal allele in most tis-
been identified that encode for untranslated RNA 31,35  sues examined except the heart where it is biallelically
and antisense RNA 3 6 '3 7 that may be involved in imprint expressed.62 This explains why KvLQT1, responsible for
control. Some imprinted genes, such as H19 and IGF2, the autosomal dominant cardiac arrhythmia long QT syn-
that are located in imprinted clusters show coordinate drome, shows no parent-of-origin effect in this disorder.
regulation. Imprinted genes also often reside in chromo- Te 2

soma reion tht udero ayncronus eplca- The maternally expressed p57' P, which encodes for a
somal regions that undergo asynchronous replica- cyclin-dependent kinase inhibitor, also maps to 11p15.5.
tion,3

8'
3 9 and the meiotic recombination frequencies in Abnormal imprinting and epigenetic silencing of p57KIP2

these regions may differ between the male and female Ag
germ cells. 40 Another characteristic of imprinted genes is is found in some individuals with BWS,6 3 and mutations

an associated allele-specific DNA methylation of cytosine are present in about 5% of BWS patients. 64- 66

residues in CpG dinucleotides that appears to distinguish To date, ten imprinted genes have been mapped to

the parental alleles.4 1- 43 Repetitive elements associated 11p15.5 (Table 1). Flanking these imprinted genes are

with the areas of differential methylation have also been the non-imprinted NAP2 (centromeric border) and

identified in several imprinted genes (ie, H19, M6p/lgf2r, L23MRP (telomeric border) genes.67 The syntenic region
U2afbp-rs, and p 5 7 KIP2).44-48 in the mouse, distal chromosome 7, confirms the exis-

tence of an imprinting cluster at this chromosomal loca-
tion. 68 A possible explanation for the involvement of mul-
tiple genes in BWS (even if IGF2 overexpression is

Imprinting in Genetic Diseases directly responsible for BWS) is that one or more of the

Beckwith-Wiedemann Syndrome adjacent genes (eg, H19, p 5 7 KIP2, KvLQT1) are involved
in the regulation of IGF2 expression. Experimental evi-

There are a number of human genetic diseases associ- dence supports this postulate since transgenic mice that
ated with imprinting defects (reviewed in Refs. 49 and overexpress Igf2 develop symptoms similar to BWS. 69
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Prader- Willi and Angelman Syndromes sion to offspring results in AS. These PWS and AS
microdeletion results support the IC hypothesis, but a

Two clinically distinct genetic diseases associated with bipartite structure must be present since the minimally
genomic imprinting on chromosome 15q11-q13 are the deleted regions responsible for PWS and AS are dis-
Prader-Willi syndrome (PWS) and the Angelman syn- tinct.87 An alternate mechanism for imprinting mainte-
drome (AS). Each syndrome is associated with deficien- nance in this region relies on an enhancer-competition
cies in sexual development and growth, and behavioral model between cis-linked genes;4' 88 however, methyl-
and mental problems including retardation.7 °'7 1 Major ation analysis of the PWS/AS region reported by Schu-
diagnostic criteria for PWS patients include hypotonia, macher et a189 does not support this.
hyperphagia and obesity, hypogonadism and develop-
mental delay, 2 AS patients often display ataxia, tremu-
lousness, sleep disorders, seizures, and hyperactivity. Imprinting in Brain and Behavior Development
Severe mental retardation accompanied with a lack of
speech may also be present, but AS individuals often The paternally expressed human MEST gene maps to
display a happy disposition with outbreaks of laughter. 73  7q32, a region where maternal UPD is associated with

PWS and AS are autosomal dominant disorders show- intrauterine and postnatal growth retardation.21' 90 Re-
ing parent-of-origin effects since the inherited diseases cently, a targeted deletion was introduced into the coding
are transmitted from only one of the parents. Approxi- sequence of the mouse Mest gene to determine its func-
mately 70% of PWS and AS individuals have a de novo 3- tion.9 1 When the deletion was paternally derived, Mest
to 4-megabase deletion in their paternal or maternal chro- +/- mice were viable and fertile; however, they exhibited
mosome 15ql 1-qc13, respectively. Maternal UPD occurs growth retardation and increased lethality. Mest-/+ an-
in most of the remaining PWS patients (25%); however, imals (deletion maternally derived) showed none of these
paternal UPD only occurs in about 4% of AS patients. 16' 74  effects indicating that the phenotypic consequences of
The preferential loss of parental alleles associated with this mutation are detected only through paternal inheri-
different phenotypes, coupled with the instances of UPD tance. Interestingly, Lefebvre et al9l found decreased
indicate the involvement of imprinted genes (ie, pater- reproductive fitness in the females that inherited the tar-
nally expressed gene(s) for PWS and maternally ex- geted disruption from their father. This effect was not
pressed gene(s) for AS). 70 Recently, approximately 20% based on the genotype of the progeny, but rather was
of the AS patients without a chromosomal deletion were due to an abnormal nurturing behavior of the mutant
found to have truncating mutations in UBE3A, a gene parturient females. Aberrant behavior of the mothers in-
encoding a ubiquitin protein ligase involved in protein cluded failure to ingest the extraembryonic tissues (a
turnover.7 5 ,16 UBE3A, mapped to 15q11-q13, has now normal behavior in most mammals), reduced rate of nest
been reported to be maternally expressed in the human building, and pup neglecting. When the pups were fos-
brain.,7 '78 Thus, abnormalities in the maternal-specific tered to wild-type females, no phenotypic differences
expression of UBE3A during brain development has been between wild-type pups and Mest-/+ pups were appar-
proposed for AS.79 This region also harbors four im- ent.
printed, paternally expressed candidate PWS genes: The results of this study demonstrate that the pater-
small nuclear riboprotein-associated polypeptide N nally expressed Mest is a positive regulator of embryonic
(SNRPN), Imprinted in Prader-Willi (IPWI), zinc finger 127 growth, and is involved in the regulation of mammalian
(ZNF127), and necdin (NDN).35'80 - 82 The imprinted, behavior associated with the rearing of offspring. These
paternally expressed transcripts of PAR1, PAR5, and findings are consistent with the hypothesis that the im-
PAR-SN may also be involved in PWS. printing of genes arises from the conflict of interest of the

Imprinting defects resulting from microdeletions tar- parental genomes in mammals, 28 and supports the im-
geted to the SNRPN gene have been identified in a small portance of imprinted genes in brain development. Pre-
percentage of PWS patients that maintain both parental vious results using Pg and Ag mouse embryos sug-
complements of 15ql 1-q 13.8083.84 These deletions alter gested that both maternally and paternally derived genes
SNRPN promoter methylation and prevent expression of contribute to the growth and function of specific brain
its paternal allele. This results in the silencing of other regions in a complementary fashion.92 Keverne et a19 3

paternally expressed genes in the cluster.8 3'85 These found that Ag cells primarily contributed to hypothalamic
microdeletions apparently disrupt an imprinting center8 5  composition, whereas Pg cells localized to the cortex,
involved in resetting the correct imprinting pattern during striatum, and hippocampus, but not to the hypothalamus.
gametogenesis. 8 4' 85 The alternate use of SNRPN tran- Brain growth was enhanced by Pg cells and retarded by
scripts (BD exons) may be involved in the normal imprint- Ag cells, further supporting the postulate that genomic
ing process.86 Offspring inheriting microdeletions from imprinting is critically involved in mammalian brain devel-
their mother exhibit no apparent phenotype; however, a opment.
subsequent paternal transmission results in PWS. In com- Evidence for imprinting effects in human diseases as-
parison, a small percentage of AS patients have similar sociated with mental abnormalities includes the afore-
microdeletions in the SNRPN gene (albeit in a region mentioned Prader-Willi and Angelman syndromes. There
farther upstream) that disrupt the resetting of the imprint- is now also evidence of cognitive imprinting effects in
ing pattern. In this case, progeny inheriting paternal mi- humans displaying normal intelligence. Skuse et a194 re-
crodeletions do not develop AS, but maternal transmis- cently reported that an imprinted X-linked locus is poten-
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tially responsible for differences in cognitive function of
females with Turner's syndrome. Although normal fe- A 00
males (46,XX) inherit an X chromosome from both their
mother and father, only one X chromosome is inactivated.
Turner's syndrome is a sporadic disorder resulting when
all or part of one X chromosome is deleted in females.
These females display normal intelligence, but overall /
have a higher incidence of social difficulties.9" 96 Turner
syndrome women who inherit the X chromosome from
their mother (45,Xm) generally exhibit more behavioral

difficulties than those inheriting the X chromosome from

their father (45,Xp). This finding provides the first evi-
dence of genomic imprinting on the human X chromo-
some.94 Based on cytogenetic analysis of these patients, 1
partial deletions of the short arm of the paternally derived
X chromosome were found. This suggests that the puta-
tive imprinted locus escapes X-inactivation and poten- LOH Inactivating LOI UPD
tially lies in Xp11.23-Xqter. Interestingly, Miller and Wil- Mutation
lard9 7 have recently identified a 5.5 megabase region on Figure 3. A: only one allele of a tumor suppressor gene (T) is expressed

the human Xpl 1.21 -pl 1.22 that contains eight expressed because of genomic imprinting CO'). Loss of heterozygosity (1,011) of the
expressed allele or an inactivating mutation in the expressed allele (TM)

sequences which escape X inactivation, However, an results in loss of tumor suppressor function. B: Only one allele of the

imprinted gene(s) in this region is yet to be identified. proto-oncogene (P) is expressed because of genomic imprinting (p)). Loss

Parent-of-origin effects involved in other behavioral of imprinting (LOI) or uniparentail disomy (UPD) results in biallelic expres-

and brain disorders have also been reported. Included sion of the proto-oncogene.

among these are bipolar affective disorder,98 
100 schizo-

phrenia,10 1 '10 2 and autism.10 3 However, the involvement Aberrant genomic imprinting and its role in cancer are

of genomic imprinting in these examples remains to be best exemplified by studies on Wilms' tumor, a childhood
elucidated. For an extensive summary of parent-of-origin tumor that arises from metanephric blastemal cells. Di-

effects in human disease, consult Morison and Reeve. 10 4  rect genetic evidence linking tumorigenesis and aberrant
imprinting was identified when 70% of Wilms' tumors
were found to have biallelic IGF2 expression.11 3 115 In-
activation of H19 was also present in a number of these

Imprinting in Human Cancer cases.115 The H19 gene possesses a CpG island in its
promoter that is normally methylated on the paternal al-

There are numerous reports of tumors showing a bias in lele and unmethylated on the maternal allele.44'45'115 An
allelic loss. On a genome-wide scale, the complete hy- enhancer competition model for the reciprocal control of
datidiform mole and benign ovarian dermoid cyst arise expression of the imprinted IGF2 and H19 genes has
from cells that are completely Ag or Pg in origin, respec- recently been proposed.1 6' 117 Thus, LOI of the IGF2
tively.10 5' 10 6 In addition, numerous tumors are associated gene in Wilms' tumor could result from loss of H19 ex-
with the preferential loss of a particular parental chromo- pression.116e 117 This scenario is supported by the finding
some, indicating the involvement of imprinted genes. that H19 null transgenic mice show biallelic expression of
Examples include neuroblastoma (maternal chromosome IGF2.116 The coupling of biallelic IGF2 gene expression
1p36 and paternal chromosome 2),107 acute myeloblas- with H19 inactivation is even observed in phenotypically
tic leukemia (paternal chromosome 7),108 Wilms' tumor normal kidney tissue surrounding the Wilms' tumor. This
(maternal chromosome 11p15.5),109 rhabdomyosarcoma suggests that the inactivation of H19 and the biallelic
(maternal chromosome 1 lp15.5),11 ° and sporadic osteo- expression of IGF2 are linked, and occur early in devel-
sarcoma (maternal chromosome 13).111 A role for opment.11 9 Other human malignancies showing LOI at
genomic imprinting has also been implicated in the de- the IGF2 locus are presented in Table 2. These results
velopment of familial glomus tumors based on inheri- indicate deregulation of IGF2 imprinting is mechanisti-
tance patterns since tumor susceptibility is inherited pa- cally involved in the development of a variety of tumors.
ternally.1 12  Because imprinted genes are functionally haploid, an

Imprinted genes can be involved in carcinogenesis in imprinted tumor suppressor gene would be predicted to
several ways (Figure 3). Loss of heterozygosity or UPD at increase cancer susceptibility since the inactivation of
an imprinted region may result in the deletion of the only only one allele would eliminate tumor suppressor func-
functional copy of a tumor suppressor gene. Alterna- tion. WT1, 120' 121 p 5 7 KIP2 122-124 and M6P/IGF2R 125- 128

tively, LOI or UPD of an imprinted gene that promoted cell represent imprinted genes implicated in tumor suppres-
growth may allow gene expression to be inappropriately sion. p 5 7KP2, mapped to 11 p15.5, encodes for a cyclin-
increased. Finally, mutational inactivation of an IC might dependent kinase inhibitor that is maternally expressed.
result in the aberrant expression of multiple imprinted Epigenetic silencing of the expressed allele has been
oncogenes and/or tumor suppressor genes present in an reported in some tumors and BWS patients.6 3 Addition-
imprinted chromosomal region. ally, approximately 5% of BWS patients have p57KIP 2
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Table 2. Aberrant Imprinting in Human Cancer

Tumor type Gene Reference

Childhood Tumors
Wilms' tumor IGF2,H19,p57KIP2 ,M6P/IGF2R 63, 113, 139, 162
Rhabdomyosarcoma IGF2 203
Ewing's sarcoma IGF2 204
Hepatoblastoma IGF2 205, 206

Adult Tumors
Bladder IGF2,H19,IPW 207, 208
Breast IGF2 209, 210
Cervical IGF2,H19 211
Choriocarcinoma IGF2,H19 212
Colorectal IGF2 213
Esophageal H19 214
Gastric adenocarcinoma IGF2 215
Glioma IGF2 216
Hepatocellular IGF2,H19 217, 218
Leukemia-acute myeloid IGF2 219
Leukemia-chronic myelogenous IGF2 220
Lung IGF2,H19,p73 221-223
Medulloblastoma IGF2,H19 224
Mesothelioma IGF2 225
Ovarian IGF2 226
Prostate IGF2 227
Renal cell carcinoma IGF2,p73 148, 228
Testicular germ cell IGF2,H19 229
Uterine IGF2 230

mutations;6 4 however, p 5 7KIP2 mutations have not been in humans, with most individuals having biallelic expres-
identified in tumors. Thus, the putative tumor suppressor sion.136-138 The existence of individuals with an im-
function of p57KIP2 remains to be clarified. Recently, printed M6P/IGF2R tumor suppressor suggests that they
NOEY2 (ARHI), a novel ras-related, maternally imprinted may have increased susceptibility to tumor development
gene at 1 p31, was identified as a putative tumor suppres- because of aberrant imprint control. This postulate is
sor gene in breast and ovarian carcinomas. In the major- supported by Xu et a11

3. who recently reported partial
ity of cases, the functional allele was lost.129  imprinting of M6P/IGF2R in 50% of Wilms' tumor patients.

Recent reports demonstrate that the M6P/IGF2R at The precise molecular mechanism for genomic im-
6q26 is inactivated in a variety of tumors at the earliest printing of M6P/IGF2R is not completely defined. Methyl-
stage of transformation.126e12e The M6P/IGF2R plays an ation of a CpG rich region in intron 2 (Region 2) of the
integral part in the intracellular sorting of lysosomal en- expressed maternal allele has been shown to carry the
zymes, the activation of the growth inhibitor transforming imprint signal for this gene in mice.4 ' 1 40 Birger et al1 4 1

growth factor-f31 (TGF-01), and the degradation of IGF2, have identified a 113-bp sequence, in region 2 of the
but it is not directly involved in cell signaling.19

1 132  The moue identif ge , that se rves as a et ion in-

M6P/IGF2R is mutated in 60% of dysplastic liver lesions prntn box renef therestablismentiof if-

and hepatocellular carcinomas of patients with or without entiag m etaon. f ore thishren appers
hepaiti vius nfetio .11,16, ' Te MPIIF2Ris lso ential methylation. Furthermore, this region appears tohepatitis virus infection. 120 '12 6'129 The M6P/IGF2R is also fnto stepooe fa nies rncitta
mutaed n 30 ofbreat tmor,"' nd he gne on- function as the promoter of an antisense transcript thatmutated in 30% of breast tumors, 127 and the gene con-

tains a polyG region that is a common mutational target in originates only from the repressed paternal allele. This
indicates that a form of expression competition regulatescolon, gastric and endometrial tumors with mismatch 1

repair deficiencies and microsatellite instability. 128 ,132 ,1 32  imprinting of the M6p/Igf2r gene in mice.140 Region 2 of

Moreover, it has recently been reported that the M6P/ the human M6P/IGF2R also contains parent-of-origin

IGF2R is mutated in human glioma samples that do not methylation, but gene expression is biallelic. 142' 143 Con-

contain mutations in the transforming growth factor-p sequently, humans and mice appear to possess an al-

type II receptor (TGFBRII) or Bax genes.133 In both tered ability to read the M6P/IGF2R imprint marks.

breast127'13 4 and liver carcinogenesis, 128 the allelic inac- Functional polymorphic imprinting has also been ob-
tivation of M6P/IGF2R occurs as an early event, during served for human genes encoding IGF2, 14 4 

VVT1,
120 and

the initiation rather than the progression stage of trans- the human 5-HT2A receptor gene HTR2A. 1 45 Recently,
formation. the mouse Kvlqtl gene has been shown to undergo de-

Although imprinting among individuals and mamma- velopmental relaxation of imprinting in a strain-depen-
lian species is generally conserved, the imprint status of dent fashion.1 48 Whether polymorphic genomic imprint-
M6P/IGF2R in humans and rodents is strikingly different. ing occurs in other genes, and functions in determining
The M6p/Igf2r is imprinted in mice1 8 and rats,13 but individual and/or species differences in susceptibility to
imprinting at this locus appears to be a polymorphic trait diseases remains to be determined.
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The human mannose 6-phosphate/insulin-like growth factor 2 re- all offspring, but not all are biallelically expressed. The phenom-
ceptor (M6P/IGF2R) gene located at 6q26 (Rao et al. 1994) en- enon of monoallelic expression of the same parental allele is called
codes for a multifunctional receptor that possesses distinct binding genomic imprinting (Surani 1998). The M6p/IgJ2r gene is im-
sites for phosphomannosyl glycoproteins and IGF2 (MacDonald et printed in mice (Barlow et al. 1991) and is expressed only from the
al. 1988; Morgan et al. 1987), retinoic acid (Kang et al. 1997), and maternal allele in all tissues except potentially the brain (Hu et al.
urokinase-type plasminogen activator receptor (uPAR; Nykjaer et 1998). In contrast, imprinting of the M6P/IGF2R gene is a poly-
al. 1998). The receptor is involved in fetal development, tumor morphic trait in humans, with most people having biallelic expres-
suppression, maternal regulation of intrauterine growth, and has sion in all tissues (Xu et al. 1993). Although imprinting of the
recently been associated with the development of human cognitive M6P/IGF2R may have provided an evolutionary advantage to the
ability (Chorney et al. 1998; De Souza et al. 1997; Kornfeld 1992; mother during the emergence of mammalian intrauterine growth
Wang et al. 1994). To facilitate further genetic analyses of the (Haig and Graham 1991), monoallelic expression of this gene
human M6P/IGF2R, we have determined its complete genomic would also be predicted to increase cancer susceptibility. In sup-
organization, defined the intron-exon boundary sequences, and de- port of this postulate, Xu et al. and associates (1997) have recently
signed intronic oligonucleotides for PCR amplification of the 48 demonstrated M6P/IGF2R imprinting in 50% of Wilm's tumors.
exons included in the 136-kb genomic sequence. Plomin and his colleagues have also identified the M6P/IGF2R

The M6P/IGF2R is a chimeric receptor possessing binding as a putative "IQ gene" (Chorney et al. 1998). By comparing
sites for four distinct classes of ligands (Kang et al. 1997; Nykjaer Caucasian children with an IQ of 160 or higher with those with an
et al. 1998; MacDonald et al. 1988; Morgan et al. 1987). The M6P average IQ, they showed that the M6P/IGF2R is linked to human
binding site enables the M6P/IGF2R to target to the lysosomes cognitive ability. If a polymorphism in the M6P/IGF2R coding
both newly synthesized lysosomal enzymes from the Golgi and sequence or its regulatory region is subsequently shown to func-
phosphorylated proteolytic enzymes endocytosed from the extra- tionally affect IQ, it would be the first identified gene known to
cellular environment (Kornfeld 1992). Furthermore, the latent contribute to intelligence. Thus, the M6P/IGF2R plays a funda-
complex of transforming growth factor beta (TGF[3), a potent mental role in biological processes ranging from embryogenesis to
growth inhibitor, binds to the M6P/IGF2R through these M6P carcinogenesis. How the M6P/IGF2R could possess such diverse
binding sites, thereby facilitating its activation by plasmin (Dennis biological functions is an intriguing enigma that remains to be solved.
and Rifkin 1991). The effectiveness of TGFP3 activation may be To facilitate future studies on the human M6P/IGF2R, we have
further enhanced by the direct binding of uPAR to the M6P/IGF2R characterized its complete genomic structure. The human cDNA
(Nykjaer et al. 1998). The mammalian M6P/IGF2R also contains sequence was divided into 48 exons based upon the mouse geno-
an independent IGF2 binding site that is absent in chickens (Zhou mic structure (Szebenyi and Rotwein 1994), and PCR primers
and Sly 1995). IGF2 binding to the M6P/IGF2R leads to lysosomal were designed to traverse these putative introns. All the introns
degradation rather than intracellular signaling, a process mediated except 1, 2, and 4 were amplified from human genomic DNA with
by both the IGF1 and the insulin receptors (Kornfeld 1992). There- either long-template PCR (Boehringer Mannheim Corp., India-
fore, loss of M6P/IGF2R function would be predicted to increase napolis, Ind.) or traditional PCR (Qiagen, Inc, Santa Clarita, Ca-
the extracellular concentration of IGF2, decrease the level of active lif.). PCR products were sequenced on an ABI automated se-
TGFP3, and increase the secretion of proteolytic enzymes. These quencer (Perkin-Elmer Corp., Foster City, Calif.). The sizes of
biological effects suggest the M6P/IGF2R functions normally as a introns 1 and 2 and their 5' and 3' boundary sequences were
tumor suppressor. previously defined (Riesewijk et al. 1996; Smrzka et al. 1995); this

A number of reports now strongly support this postulate for a information is available on GenBank (Accession Nos. X83699,
wide variety of human tumors. Briefly, the M6P/IGF2R is mutated X83700, and X83701). To sequence intron 4, human BAC clones
in 60% of dysplastic liver lesions and HCCs in patients with or (174E20 and 650K6) were first obtained by probing filters from
without hepatitis virus (HV) infection (De Souza et al. 1995a, Research Genetics, Inc. (Huntsville, Ala.) with an RT-PCR prod-
1995b; Yamada et al. 1997). Its inactivation also plays a prominent uct spanning exons 1 to 6. A 13-kb stretch of DNA containing
role in the early stage of breast cancer development (Hankins et al. intron 4 was then PCR amplified from this BAC clone and the
1996), and increased expression of the wild-type receptor in breast exon-intron boundaries sequenced. With the exception of intron
cancer cell lines leads to apoptosis (Oates et 'al. 1998). Further- 15, all exon-intron splice sites (93/94) conformed to the AG/GT
more, the M6P/IGF2R gene contains a poly-G region that is a rule (Mount 1982). Interestingly, the single intron splice site ex-
common mutational target in colon, gastric, and endometrial tu- ception is also present in the mouse M6p/Igf2r homolog (Szebenyi
mors with mismatch repair deficiences and microsatellite instabil- and Rotwein 1994).
ity (Souza et al. 1996). Thus, M6P/IGF2R inactivation is a fre- Intron sizes were determined by sequencing the entire intron or
quent oncogenic event that occurs early in carcinogenesis. estimated by electrophoresis. Twenty introns were sequenced en-

A full parental complement of autosomal genes is inherited by tirely (that is, introns 8, 9, 13-17, 21, 23, 24, 27, 28, 32-34, 37, 38,

42, 43, and 46), and at least 100 bp of flanking intronic sequence
were determined for the remaining introns. The entire human M6P/

Correspondence to: R.L. Jirtle IGF2R gene was then reconstructed with the use of the previously
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Table 1. Human M6PIIGF2R intron-exon boundaries.

eDNA Exon Intron Intron
Exon (mt) size (bp) 5' splice donor size (kb) 3' splice acceptor phasea

1 1 296 CAGgtgggtggecccgccc 22.0 tttcttcctttccagTTA 2
2 296 140 TGGgtaagtagaactacc 17.0 tttctctccaaatagGTG1
3 437 125 CTGgtgagtccacacagg 1.5 atttttttttaatagGGA 0
4 562 99 GAGgtaacatgggaactt 13.0 cttcctcccttccagGTG 0
5 661 133 TAGgtatgaatctttgtg 2.0 atacatgattttcagACA1
6 794 130 CAGgtcagtcaaggcctc 2.2 atgtggctctcccagGCT 2
7 924 106 GAGgtaagtgactcgtct 2.7 cattgttcctgatagGGC 0
8 1030 163 GAGgtaagcaggtgcttt 0.227 tttccctgtttttagGTT1
9 1193 166 CCGgtacgtcaacaacct 1.315 ttcacaaaaatctagATA 2

10 1359 104 CAGgtaagtgtgcgctgg 5.5 tcttgaattgtgcagGTA 1
11 1463 165 CAGgtactgccctccttg 2.5 tttgttttgttacagAAC1
12 1628 141 TGGgtgagttgtgcctgg 1.2 ccctttctcttccagATA 1
13 1769 144 CAGgtaaaaattttaaaa 1.095 tttccccattgacagGTG 1
14 1913 138 CAGgtctgtgtccaagca 0.614 tstaatctttctaagGGT 1
15 2051 148 AAGgcaagtagcttctca 0.511 cgtgtgttaattcagTGA 2
16 2199 178 CAGgtaggaatgtttgtc 0.456 ctgccgtgggattagGAA 0
17 2377 116 CAGgtgaggcagagtcag 0.468 gctttgaaattttagTCT 2

* 18 2493 169 CAGgtgaatctgttttca 2.0 ctggttttcttgcagGGC 0
19 2662 180 CTGgtaaggcactgctgc 5.0 gatttgcccattcagAAC 0
20 2842 102 CAGgtacgtgtgctttca 1.5 ttttgtttcctgtagGCT 0
21 2944 102 ATGgtaagagcgatatga 0.78 ccgtctgacctgcagTTT 0
22 3046 193 AAGgtgagctcagagcca 1.6 cttcttgctttacagGTA 1
23 3239 171 CCGgtaaggccgtgcggc 0.781 tttgttgtgtttcagACC 1
24 3410 144 AGGgtgagttctccttgg 0.105 attctgttcttccagGCA 1
25 3554 176 TCGgtgtgtgttcagacc 0.8 tgatttatattacagGGC 0
26 3730 88 AAGgtaggactgggcctg 1.5 tccatgttcttgaagGGG 1
27 3818 216 CAGgtaccattgtttgtc 0.771 tctccttctttacagGTC 1
28 4034 131 CGGgtgagcatgtaccga 0.271 tcttaacttttttagCCA 0
29 4165 98 CAAgtaagtccatggatg 3.0 ttttcttcttttcagAGA 2
30 4265 137 CTGgtgagagagggcctc 1.5 tgtctggtgctgcagAGC
31 4400 191 GlGgtaagggactgttcc 1.5 tgtgctttgttgtagAAC 0
32 4591 127 CAGgtgagaggtggtgec 0.732 tettecaccctacagGAC1
33 4718 120 TGGgtgagtgctgtggtc 0.327 tcccttgtggtgcagGGG 1
34 4838 257 GCGgtgagttttcagatg 0.286 tttcctacttaacagACC 0
35 5095 219 ATAgtaagtatgacaaat 2.0 tcgctctttgtttagGAT 0
36 5344 150 ATGgtaagtgtgggcctg 2.3 tcttcctggcaacagGGA 0
37 5464 162 AAogtaatgcgttcaccc 1.233 atggtttttgtccagGTG 0
38 5626 208 CAGgtaaatatttgaaat 0.341 tcttcttctttccagAAA 1
39 5834 147 ACTgtgagtaggacggct 3.6 ccntacactccccagCAA1
40 5981 235 CTCgtgagtgccttccca 1.0 tgtgtcgttttctagGTA 2
41 6216 137 TAGgtaaggcctgtgggt 3.0 atttgtgtgtttcagGTG1
42 6353 115 GAGgtcaggagactgggg 0.957 cttccctcctcctagGTT 2
43 6468 147 TAAgtaagtaaaacgttt 0.662 tttctgtctcttcagGCT 2
44 6615 188 AAogtaatccgtggcttc 6.5 cttcccgtatgacagACG 1
45 6803 187 GGGgtgagtatgaaatcc 5.5 gtgacgtccttgcagGGT 2
46 6990 153 GAGgtaagcgggtggcag 1.081 cctttttttttatagGGA 2
47 7143 70 AAGgtaattttctgtggc 1.8 gttgatccctggcagGTG 0
48 7213 1878

a Intron-exon splice junctions are categorized as phase 0, uninterrupted codon; phase 1, codon interrupted after the first nucleotide; and phase2, codon interrupted after the second
nucleotide.
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Fig. 1. Genomic organization of the human M6PIIGF2R. A) The 48 exons structural repeats, each of approximately 150 amino acids; a 27-amino acid
of the human M6P/IGF2R are distributed over approximately 136 kh. B) gap between repeats 14 and 15 (gap); a single 23-amino acid tranamem-
The mRNA is subdivided into exons, and the ACAA tetranucleotide in- brane domain (tin); and a 164-amino acid cytoplasmic tail (cyto) (Morgan
sertion (Hol et al. 1992) and the (GT)n dinucleotide (Goto et al. 1992) et al. 1987). Repeats 3 and 9 (M) contain the M6P-binding domains, and
polymorphic sites in the 3'-UTR (exon 48) are shown. The mRNA is repeat 11I(G) forms the IGF2-binding domain (Dahms et al. 1993; Schmidt
also aligned with the protein sequence, which is divided into 15 et al. 1995).
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Table 2. Intronie oligonucleotides for PCR amplification of the 48 human M6P/IGF2R exons.

Exon Fl1 (5' to 3') RI1 (5' to 3') Nested Primer (5' to 3')"

1getgteacgtgaegcggtte aecgcgagcggagcetgcgtc geegeegetgeegetgtcgcF2
2 ctagtttgtggeagttttaagcaaatg attgceaatceagtaatttcagg gataaateagtgaeattgacaagttgF2
3 ggttatgtatgttttatageetg ttaaagaaatacatcaagtgcctgtg aataeateaagtgcctgtgtggacR2
4 tttattttagtagcetttactgcattetea gataaagtteccceagagtataettc eeagagtataetteataagcatgR2
5 ctgattgaccaagatgtataetg gaaaggeaaagatattgaageeatag cctcaccaccaccccctcagR2
6 ctaagggtacgtgtgattateaete gaaagtcaggtccttgctggag aaacgeeaaeagcatcggaggR2
7 ggcaacatatgaatttggatgtae eaacccaggctactgtgcge gtgcgccacattagtgatcaggR2
8 gtggaaaatctgcattaagctgeatg etcttccctaageagegec caggaggcagaaagcaectgcR2
9 gactaagtaýagaetgtaatettetaatace cgcaeagaggttgttgaegtac aatacctatteatataaaacaagcctcF2

10 cecaaacaeatttgtetgtgtattc aeaageacatgcccatgaatgc gcaaagaggaggggctgaacR2
ItI gctgstectcaattttggtcacg gaaaatgttccatgagcatgtggae gactaagacccgctttggcaaggR2
12 gtgactcagagaaateageattgc ctaactcatteeaaacetggatgce gaaaagcatcacctagatcttecR2
13 gteacttctttgtctgcgtgatgatc atatgaagaatgcaggacctctgg eaggacetctggcagaagecR2
14 gtceettccaagtctacttetagc gtggttccaagteacattaaageag cacattaaagcagaggtectgcR2
15 gttgggaaeetcctgggaag ettagcatataatgcctaagaatgaaac ctaagaatgaaacagaactgagaagcR2
16 gtgactcetcacgtcgeteaeg cacaggcatgagtateeteagg gtatcctcagggagcgcgatgR2
17 ctcattgggaaeattgcteteg cagcaaeacttgcaacetcagc eaacctcagcatetgtaecagR2
18 gtaagetttaettececaactaeatag cteceactaagteatggaattagg taggagggcaaaggagacaageR2
19 ceaeeaataaegaatcgactg caeataaggcaacgctcagtc aatgcageagtgaaggtcaecR2
20 agtattettttggttetatcaagttec gtccagcaggcagctcagc ctcagcacgagggccaggtgR2
21 gtgctgtatgtatgttatgtteetgtg gtgacttcaataatgcactectc ctgtttcaaageaaactggaaatgcR2
22 tcttgtctgtggtgagatacgagg ctacactcaggaaggtgcatggc atggccagccacagagccaeR2
23 ctgcactgtgcltgtgggetgc gactcttgaccggcctctcagtte gaeeggectctcagttcttaggR2
24 geagttcttgagtgetcacaagg caaatgctctaataaatgaacagacgc cagacgecaatcaagagaccaagR2
25 gageatttgactcaaggtcatege gaaatgggaaatggagtcaceeg gggacaacatctcattgetggtcR2
26 gattacaggtgtgageeaccgtg catcgttcagaaegtctgctactctatac aaaatgacttgtagggacaggeR2
27 cgtgtgtggttgcagttgce eteaagggaaaattcatctteagc gttgcagttgcecttcaettcF2
28 gtgteacatgtettaggetaag aatatgatcceagcagcetgag gtttgaeagcetagggacF2
29 caaagtataaaetaaagttttgcattetcac geaaaatcataecaagttagtctgtcc gttttgcattetcacttttatatatgtgF2
30 acgaccaagcctaactaactgc ctctcaccagtgctggcetgtg ectgtgatacactcactgcaaacR2
31 tgatgaagttetgttctagcctg gcagaaggtgcaggaacagtccc gggagtcactaaaggcaactcF2
32 ccaettgtaagttgaaatcatgatagac eaeegtctctcacetgcgctg gctggggttaaegactggcacR2
33 gccteecaagteteagetec gcaaagagactgaggacaaec eectggagteactgtgtccF2
34 gaaattgatggteetgacttgeg geactggagatgeacttctee eateagaaaattggccatcgagtcF2
35 ggatgaeetagtggtgattagg cgeaaaggttatcactaaaagtcttgc gtcttgcaaaaattatctccacccttgR2
36 ccttgggaatggttaatttcetg cgcactttctggttgtctagce gccttggetcactaacecgeagR2
37 tgtcaetgctatctateeetatgee cagcacetggeaeetggtaeaee gtaeaectgeaceagcaacgR2
38 actttgagacctgggtge eagcttetttctgetgctatgte gctgccactetgetgaeggcF2
39 etgaggtgattgtgcctggeg ctcagtgtgaatcgagccttgac cgaggcacagetgccacactgF2
40 gcatagacacagtgacagtetgate gcagtetgaagttecatgc gttcalcatgetgagggtgtggeR2
41 cagggcagagacgtcacttge caccttceccggttcagatgctg gtteagatgctgctccttgaaccR2
42 gaattgacaggtgtgagceaetg ctccagtatgcteactgeaeag gcacagtcccgetctgagccR2
43 gttttgeagtettcccttatgtctg geattgetggtttaattttgaacac catttcacagetcagaaggaaaacgR2
44 ctgagggtttatgtcatgaatgcc ccttccttggaggaagttaaatgtg gaagttaaatgtggaactttgtgggR2
45 ggagctaagctcagtctgctcgtg eacttattcttaagggaagatgtgg gatgtggggtacaagtgctaagcR2
46 eaggttgtggctgtggcagc tagctatggaggcatgcatec catccacccgccccaeetcR2
47 ccatgccctetctacaetggag cctgatgagaaegacatggacagcg ggeaggcettcaagagactegR2
48 ggcteacgtggtetetgctgttg gcetgaectectcaccctc gcatcatcgagtggaagteR2

'Nested primers F2 and R2 should he paired with RI and F1, respectively, during second-round PCR.

characterized genomic sequence for exons 1 to 3 (Riesewijk et al. sets have been successfully employed to PCR amplify DNA iso-
1996; Smrzka et al. 1995) and the sequence from our overlapping lated from either frozen tissue or formalin-fixed, paraffin-
PCR-generated products. The complete set of intron-exon bound- embedded samples. These nested primer sets yield a single PCR
ary sequences for the M6PIIGF2R and all of the intron and exon product approximately the size of the exon (Table 1) plus 80 bp.
sizes are presented in Table 1. The codon position that is inter- The PCR conditions used for all primer sets were 94'C x 20 s,
rupted by the intron is indicated by the intron phase. The intron- 55'C x 30 s, and 72'C x 20 s for the 25-cycle first round and
exon splice junctions for the human M6P/IGF2R are identical in 30-cycle second round DNA amplifications.
position to those in the mouse (Szebenyi and Rotwein 1994). The In conclusion, we have determined the genomic structure and
total size of the human M6P/IGF2R gene is estimated to be 136 kb the intron-exon boundaries of the human M6P/IGF2R. These se-
(Table 1, Fig. 1). This is approximately 43 kb larger than that for quence data have been used to design PCR primers that allow for
the mouse gene, and introns 2 and 4 account for much of this the systematic analysis of the 48 exons that encode for the human
increased size. The M6P? and IGF2 receptor binding domains are M6P/IGF2R gene. This should greatly facilitate linkage, phyloge-
also assigned to the appropriate exons (Fig. 1). The intron-exon netic, functional, and mutational analyses of the M6P/IGF2R,
boundary sequences were deposited with GenBank (Accession thereby enhancing further our understanding of this receptor's
Nos. AF069333-378), and will also be available on the M6P/ function in evolution, cancer biology, and human intelligence.
IGF2R Information Core (http://www.radonc .duke.ed/-j irtle/
homepage.html). Ackntowledgmtents. We thank Angus De Souza, Greg Falls, Douglas Mar-

We have also designed intronic oligonucleotides for PCR am- chuk, David Pulford. and Tomoya Yamada for their techtnical assistance;
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